skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 25, 2026
  2. Abstract Over the last ten years, there has been considerable progress in using digital behavioral phenotypes, captured passively and continuously from smartphones and wearable devices, to infer depressive mood. However, most digital phenotype studies suffer from poor replicability, often fail to detect clinically relevant events, and use measures of depression that are not validated or suitable for collecting large and longitudinal data. Here, we report high-quality longitudinal validated assessments of depressive mood from computerized adaptive testing paired with continuous digital assessments of behavior from smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of depression. We apply a combination of cubic spline interpolation and idiographic models to generate individualized predictions of future mood from the digital behavioral phenotypes, achieving high prediction accuracy of depression severity up to three weeks in advance (R2≥ 80%) and a 65.7% reduction in the prediction error over a baseline model which predicts future mood based on past depression severity alone. Finally, our study verified the feasibility of obtaining high-quality longitudinal assessments of mood from a clinical population and predicting symptom severity weeks in advance using passively collected digital behavioral data. Our results indicate the possibility of expanding the repertoire of patient-specific behavioral measures to enable future psychiatric research. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Clinical practice guidelines, care pathways, and protocols are designed to support evidence-based practices for clinicians; however, their adoption remains a challenge. We set out to investigate why clinicians deviate from the “Wake Up and Breathe” protocol, an evidence-based guideline for liberating patients from mechanical ventilation in the intensive care unit (ICU). We conducted over 40 hours of direct observations of live clinical workflows, 17 interviews with frontline care providers, and 4 co-design workshops at three different medical intensive care units. Our findings indicate that unlike prior literature suggests, disagreement with the protocol is not a substantial barrier to adoption. Instead, the uncertainty surrounding the application of the protocol for individual patients leads clinicians to deprioritize adoption in favor of tasks where they have high certainty. Reflecting on these insights, we identify opportunities for technical systems to help clinicians in effectively executing the protocol and discuss future directions for HCI research to support the integration of protocols into clinical practice in complex, team-based healthcare settings. 
    more » « less